Dissection of the ATPase active site of P1 ParA reveals multiple active forms essential for plasmid partition.

نویسندگان

  • Anthony G Vecchiarelli
  • James C Havey
  • Lori L Ing
  • Erin O Y Wong
  • William G Waples
  • Barbara E Funnell
چکیده

The segregation, or partition, of bacterial plasmids is driven by the action of plasmid-encoded partition ATPases, which work to position plasmids inside the cell. The most common type of partition ATPase, generally called ParA, is represented by the P1 plasmid ParA protein. ParA interacts with P1 ParB (the site-specific DNA binding protein that recognizes the parS partition site), and interacts with the bacterial chromosome via an ATP-dependent nonspecific DNA binding activity. ParA also regulates expression of the par genes by acting as a transcriptional repressor. ParA requires ATP for multiple steps and in different ways during the partition process. Here, we analyze the properties of mutations in P1 ParA that are altered in a key lysine in the Walker A motif of the ATP binding site. Four different residues at this position (Lys, Glu, Gln, Arg) result in four different phenotypes in vivo. We focus particularly on the arginine substitution (K122R) because it results in a worse-than-null and dominant-negative phenotype called ParPD. We show that ParAK122R binds and hydrolyzes ATP, although the latter activity is reduced compared with wild-type. ParAK122R interacts with ParB, but the consequences of the interaction are damaged. The ability of ParB to stimulate the ATPase activity of ParA in vitro and its repressor activity in vivo is defective. The K122R mutation specifically damages the disassembly of ParA-ParB-DNA partition complexes, which we believe explains the ParPD phenotype in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS

Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions dri...

متن کامل

Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB.

ParA is an essential P1 plasmid partition protein. It represses transcription of the par genes (parA and parB) and is also required for a second, as yet undefined step in partition. ParA is a ParB-stimulated ATPase that binds to a specific DNA site in the par promoter region. ATP binding and hydrolysis by ParA affect ParA activities in vitro. ATP and ADP binding stimulate ParA DNA binding and d...

متن کامل

Switching protein-DNA recognition specificity by single-amino-acid substitutions in the P1 par family of plasmid partition elements.

The P1, P7, and pMT1 par systems are members of the P1 par family of plasmid partition elements. Each has a ParA ATPase and a ParB protein that recognizes the parS partition site of its own plasmid type to promote the active segregation of the plasmid DNA to daughter cells. ParB contacts two parS motifs known as BoxA and BoxB, the latter of which determines species specificity. We found that th...

متن کامل

Plasmid segregation by a moving ATPase gradient.

Unlike the mitotic segregation of eukaryotic sister chromatids, DNA partitioning in bacteria is still not well understood. Bacterial high–copy-number plasmids can be stably maintained by random distribution of their copies during cell division. In contrast, the faithful transmission of low–copy-number plasmids and many chromosomes depends on an active process mediated by conserved, tripartite s...

متن کامل

Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 24  شماره 

صفحات  -

تاریخ انتشار 2013